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1. Introduction

Consider the lincar model given by

(1.1) Yi =T+ oes for i =1,...,N,

T. = X, .
1 1B

Herc {ei} are independently and identically distributed with symmetric
distribution F, {xi} are (1xp) design constants, B8 (pxl) is the
regression vector, and [oi} expresses the possible heteroscedasticity in
the model. Anscombe (1961) and Bickel (1978) have considered tests for

the hypothesis of homoscedasticity, i.e.,

(1.2) H.: 0, =0, =...= 0

In the case that (1.2) is accepted, we are in a standard linear
model for which a vast theory applies. Huber (1977) and others have
argued (for this homoscedastic case) that least squares methods should
not be used blindly because the resulting estimates are sensitive to
outliers and departures from the assumption of normal errors. Huber
(1973) and many others, for example Krasker (1978), have proposed robust
regression estimates. Huber (1973) and Yohai and Maromna (1979) study
the asymptotic properties of these methods as N+ and p + =
simultaneously. ‘They argue that such 'many parameter' asymptotics are
important, both because they often occur in practice and because they
show how large a sanplc size is needed for a given model. In effect,
their work formalizes the rule of thumb: ‘''one should take about 10
observations for cvery parameter.'

In contrast to the homoscedastic casc, there has not been much work

on cstimating B in the heteroscedastic case that (1.2) is rejected, and




to our knowledge there has been no work at all on the important problem
of N+« and p + « simultaneously. Fuller and Rao (1978) consider the
case where the Y; occur in groups for which o4 is constant, while Box

and Hill (1974) and Jobson and Fuller (1980) assume that
(1.3) o, = [f(1;,80)]1
: i NP0 )

All threce papers consider only Gaussian errors. Box and Hill suggest
generalized weighted least squares (WLS) wherein the weights (1.3) are
estimated and WLS applied. Jobson and Fuller consider maximum likelihood
techniques which are particularly sensitive to non-normal errors as well
as small misspecifications in (1.3).

TFor the case p fixed and N + o, Ruppert and Carroll (1979)
developed a class of regression estimates for the heteroscedastic linear
model, which are both robust and do not depend on the normal error
assumption. Their estimates are a natural generalization of Huber's

Proposal 2 (1977) and are defined as follows. First, assume
1.9 {(t,0) = exp(6h(t)), 6(1xr) .
This cluss includes the important special casecs
Z)a/Z

(1.5) f(r,0) = o(1+1 or o explat) or alt|®.

Let  be an odd function and x be an even function (x(-«)<0, x(+=)>0).

A A
Let Bp be a preliminary cstimate of B and define 6 as any solution to

-1

(1.6) lﬁv(e) N

N
L x(Opt e ey = 0,




N
(1.7) N1

i=1

We make the conventions

00 (-log % 020...6r0)
1.8

h(1) = (1 hy(0)...h. (1),

with the parameter % chosen so that

(1.9) Ex((Y-1)£014,084)) = Ex(e;) =

when the {oi} are actually known, i.e.,

+

LIN?(R-8))

(1.10)

wn
"

Nepeo i=1

Np(O,V) = p-variate normal, mean 0, covariance V .

Monte-Carlo results show that the asymptotics

for small samples.

b A

N
N I T 5
lim N ) X3 X f (.i

A A
where t, = xin . If an exact solution to (1.6) does not exist, define 6

to minimize |HN(6)|. Finally, define ﬁ as the solution to

8) =0 .

0.

‘the conventions (1.8)-(1.9) ensure consistency of the solutions.

case of homoscedasticity, the solution to (1.6)-(1.7) is trivially
Huber's Proposal 2 1f the preliminary estimate ﬁp is also. Ruppert and
Carroll (1979) show that, in general, the solution to (1.6) and (1.7) is

asymptotically equivalent to the "optimal' robustified WLS obtainable

N0, ST R )/ e (0D

) « lim Sy ,
aam Sw

are surprisingly accurate




The purpose of this paper is to generalize the results of Ruppert

and Carroll to the casc N»»  p+», under conditions similar to those
needed by Bickel (1978) and Yohai and Maronna (1979). In the next
section we consider the estimates of B when an appropriate estimate of 6

.3 available, and in Section 3 we consider the estimation of 6.

2. 'The Limit Distribution of the Regression Fstimate

A
Assuming that 0 is of the correct order ((A10) below) and h(+) is
sufficiently smooth ((A3) below), one can follow the steps of Yohai and

A
Maronna (1979). We first establish the order of B.

Theorem 1. Under (Al)-(All) below,

A 2
NIB - =0 (1) .
B - 81%/py = 0,
The main result is as follows.

Theorem 2. Assume (Al)-(A12) below. Let VN be any symmetric square
root of Sy ((1.10) and (All)) and let {aN) be a sequence of (py*1)

vectors with IaN| =1, 17Then

9
N?ag vy (B-8) & NGO, BWP ()7 0t (0D
Here arc the assumptions.

N
Aan N J x!x =1
i=1 1!

(A2) |1i| <M< o,
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(A3) the function h(x) and its first two derivatives are continuous and

bounded on the set |x| <M+ ¢ for some € > 0. Further, Mil <

£(x,0) < M, on this set uniformly for (6 - eO[ < €.

(A4 1im(p§/2/N) max |x.[% = 0.
t No<o 1<isN !
¥ (A5) ¢ is non-decreasing and bounded.

(A6) ¢ is Lipschitz and constant outside an interval.

(A7) If D(u,z) = (p(u+z) - p(u))/z, then there exists b, ¢, and d such

that P(l€1i<CM].2) >0 and D(u,z) 2 d if [ulsc, |z|sb.
l (A8) ¢ and its [irst thrce derivatives are continuous and bounded.
A 2 _
L ‘ (0) NIB - 8l%py = 0,0

A 2 _
(A10) N|6 - o] /pN = ()p(l).

(A11) 0 < lim inf Ami.n(sN) < 1lim sup Amax(SN) < «  where Amin(') and

)«mx(-) are the minimum and maximum cigenvalues respectively.

2y 1,0 where 1y = (&p-s)' W, (8-8),

= -L oN ,2 , 2 O d
Wy = N 2] f (Ti,OO)‘Ar{‘VN X Xo Xy = f(Ti,Go).

Remarks on Assumptions: Assumption (A1) is a reparameterization device

used by fuber (1973) and Bickel (1978). Assumption (A2), which is also
used by Bickel, can be deleted if one strengthens (A3) by making M = =

a sct of circumstances holding for the homoscedastic case. Assumption




(A3) is stronger than required but is quite convenient and is true for
the {irst two special cases in (1.5). Assumptions (A4)-(A8) are as in
Yohai and Maronna (1979) cxcept for the second part of (A6), which holds
for thosc y commonly used and which can be relaxed at the cost of some
technical complications. Part (A8), in particular, can be relaxed if
pi}/ 2 in (Ad) is strengthened to p:l; the proof becomes quite messy. Part
(A9) holds, for example, in cases of homoscedasticity or, in general, for
least squares if lie:% < o  and (A10) will be verified in the next section.
Part (AL1), in effect, formalizes (1.8) and follows from (Al) in the
important special casc of homoscedasticity.

Assumption (A12) is somewhat awkward looking and is the only
obstacle to our Theorem 2 being a real generalization of previous work.
llowever, (Al2) holds in important special cases, including

homoscedasticity, as the following shows.

Proposition 1. Assumption (A12) holds if any of the following obtain:

(2.1) The variances are homoscedastic.
. 2 2
(2.2) (pN/N)maxlxi| -+ 0.
(2.3) I’.ei < w, ﬁp ig the least square: estimate, and
vim sup A (NN X!k, €(1,,0.)) < o
) nmax 17171 i’’0 )

Proof of Thcorem 1. ‘'The proof parallels that of Theorem 2.2 of Yohai and

Maronnu. Let Y]. BRI Ei/f(Ti’G()) and define
UL)—"*N 1d, y)F(t.,8))d. vE(t.,B
N(Y’ = [)N 12] ‘I'((Zi' IY) (ti’ )) iY (ti’e) ’

-li
di = xiN




Since ¢ is monotone,

y 1
P{N|€ - Blz/pN > L4} « P{sup U(y ,Lpg) >0, |yl =1}.

Now
<P o)
U(Y ) LPN) = AN].Y ANZ(Y) ’
where
-1 N . A A
A Y = py’ 1 b(zy M(ty,0))d; ¥E(t,,6)
A - L Y b, £e. 8 1oyt 0pd) . )% £(t.,5
NZ(Y) = lzl I(Zl i(ti’e) ’ 'L(JY (ti,O)pN)( iY) (tl,e) N

I'rom (A3) and (A4) it follows that

1
sup{ldin(ti,@)pﬁl: ly] =1, 1 <1< N}& 0 .

From (A3) we find that
. . N 2 -2
A (V) 2 (1d4/M)) izl ;)" I(le;lsaM )
> (WM)P(eyseMi?) + 0 (1),

the last step following from Y-M and (A7). We thus need only prove

ANlY = Op(l). Rewrite ANlY as

AN].Y = BNY + U\NI-BN)Y ’

y, N
By = (Npy) ™ 121 b(z;)x; F(15,80) -




By (AS) and (All), lilBle = 0(1) so that
$ : =1} =0_(1) .
supl I8y 1: Iyl = 13 = 0 Q)

By (A2), (A3), (A6) and (AB), for some M2 >0,

-1 N
) [y Bov] = 14,0007 T Ix; vl (e |+ 8-e])

By (Al), (A9) and (A10), this is O (1) uniformly for |y| = 1, completing

the proof. 0

Proof of Theorem 2. The proof is similar to that of Theorem 3.2 of Yohai

and Maronna. By a Taylor expansion,

0

=w1-w2-w3(88)+%( 6)'W(BB)-— We

where

£(t.,0), r; = £(1,,0

o]
pte
]

0

£
L}

5 N -1,
p = NI v(ziap)a0V X

£
)

W ' A

RNy 2 2, -l
wy = NE L0 (250005 - (B )Ti)agVy g x
'l/Nn -1 3

Wy = N0 I w7 (zia;)agVy XX X405

= oy Nt N avilx: (x (B-80)°) B 0

£
n
|




voie that from (A2), (A3), and (A10),

1/2
(2.4) lqi B ril = O(Iti‘ril + le'eh = O(It{'(i, + (PN/N) ) .
Then (2.4), (A8), and Theorem 1 show that

(2.5 (B-8)' wyB-p) = 7T IY wrieri o B-80)% agvlxt ¢ vy

n

- N A 2 el B
OCLN™* Jy0x; (B-8))° lay - vyl lagyyxgl > 0 .

(2.6) IRy |
Thus, as in (3.5) and (3.6) of Yohai and Maronna, we obtain

(2.7) (B-g)" w4(€-s) B ,

(2.8) Wy R

w
~
w>
'
w0
A
]

ne o) s
- N 2 ., 2 -1 A
Ryp = N7 [ (W' (z5a)a5 - 0" (5)r)aVy x; x, (B-B) .
By Taylor cxpansions of y' and f, we obtain
Ap ! '
WS(B‘B) = (wa + Eel ' (el))TN + Op(l) ’

where 1N is given in (A12). Because of (Al2), we see that the proof is

completed by showing
(2.9) wi = NNy aviIxt ¢ o )
' 1 1 Ve AN Xy o)

By using the symmetry of F, the fact that y is odd, and as in (3.5) and
(3.6) of Yohai and Maronna, (2.9) follows. 0

Proof of Proposition 1. Under (2.1),




——
.

d _
a? f(T,eo) =0 ,

verifying (A2). A similar easy proof follows from (2.2). When (2.3)

holds,

|

Iyl = 0 Lry/NDy

Ny xp? o E-en?

Dy

EDy < NL maxlxil2 ZT(&&V&l xi)2 = 0(max|xi|2) ,

completing the proof by (Ad4).

3. The Order of 6

From Theorems 1 and 2, we see that we must exhibit a sequence of
A
estimates 8 satisfying assumption (A10). We will show that any solution

to (1.6) will work under the following assumptions.

(B1) The even function y satisfies the same assumptions as does V.

(B2) The statistic

N
. -1 ¢ Y
(‘N = 60 N izl h(ri) (ti—'r.l) = Op((pN/N) 9.
(R3) 0 < A_ = lim inf }‘min(QN) < lim sup Amax(QN) < o,

Qq = (e x' e )N I herp)T heey).

We note that, when r is fixed, (B2) holds when 3p is the least

squares estimate, while Huber's (1973) proof can be used for classical




-

12

M-estimates if (2.2) holds. Also, (B2) follows from assumption (A9) if

there is homoscedasticity; for in this case,

60 = (log 0 0...0)
hit) = (1 hZ(T)...hr(T))
, a N
Gy = (log O)N izl (ti-'ri) .

Theorem 3. A4ssume (Al)-(A9), (Al11)-(A12), and (Bl)-(B3). Then (A10)

holda.
We nced the following lemma.

Lemma 1. et {vi} be 1.1.d. mean-azero bounded random variables; let

{si} be uniformly bounded conetante. Then

N
< N1 -
(3.1) Ay = N izl visi(ti~ri) = Op(pN/N) .
Proof. From (A9),
2 -1 N 2
Ay S [N izl Visixi' Op(pN/N) = DNOP(pN/N)

EDy = 0(L)py/N .

Proof of Theorem 3. Define HN(~) as in (1.6) and note that by (Al),
(A4), and (A9),

max{lti - Ti|: 1<is N}EO

(3.2)

N’I%J t.-1,)% = 0_(py/N
4 (ts-74 p(pN ) .
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From (A4), (Bl) and Lemma 1, we thus obtain

N
(3.3 Aoy =N L X(Eph(ry) + GuBey X' (1) * 0, y/N)
1=
- ]
< 0 (@™

from (B1), (B2) and the fact that Ex(eq) = 0. By (M), (B1)-(B3), (3.2)

and a Taylor expansion, we find that for any M2 >0,

1. .- -1 1 p
(3.4)  N* sup{|H(0,+0N"?) - Hy(8)) - aQN*|: [a] sMmpit o,
Now fix € > 0, L > 0. Choose Y’NO’DO such that N 2 N0 implies
3
PIN%|Gy| = Dypil} < /3
PN x(eh(r)] 2 v} < e/3
Define MZ by
- - ypl¥ .
L AwMZ/Z YPy D0 .
Choose N1 2 N0 so that N 2 N1 implies

Anin Q) 2 A/

and

P{left side of (3.4) 2 v/2} < ¢/3 .

Then with probability at least 1-c, N2 N and [a] = Mpd imply
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(3.5) (V/py)* Al (0g+N"%) = M, Lpyt

Also note that AHN(OO* sAN';’) is increasing as a function of s; so that

if |A] = sz:, then as in Jureckovd's (1977) proof, using (3.5),

4 -4 b
(3.6) (N/py)? eHy(8+aN"?) 2 [A|Lpy .
From (3.6), we have with probability at least 1-¢,

inflpy *JHy (0)] : N¥[6 - 8] 2 Mp)

> inf{[Al-!N(BO*AN'!’)I/MIPE‘ 4] = szié}

2 L.
Since L is arbitrary, the proof is complete. a

Remark: Throughout we have taken r fixed; r is the dimension of 6o and
h(t). This seems a perfectly reasonable assumption, as one is unlikely
to construct a complicated function for Os» and in fact, r < 3 will
suffice for most applications. However, the proofs can be forced through
when r = Ty = O(p:‘;). One must assume that the bounds in (A3) are
uniform in the components of h(+), and the only stumbling block is the

2

A
assumption (B2). When Bp is the least squares estimate and Esl <o, jt

turns out that (B2) holds whenever

O 5 Inglle | = o)
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